Document Type

Article

Publication Date

2014

Abstract

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas.

Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

Comments

Originally published in:

Liu H-N, Gao L-D, Chowell G, Hu S-X, Lin X-L, et al. (2014) Time-Specific Ecologic Niche Models Forecast the Risk of Hemorrhagic Fever with Renal Syndrome in Dongting Lake District, China, 2005–2010. PLoS ONE 9(9): e106839. doi:10.1371/journal.pone.0106839

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Public Health Commons

Share

COinS