Date of Award
8-12-2016
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics and Statistics
First Advisor
Zhongshan Li
Second Advisor
Marina Arav
Third Advisor
Guantao Chen
Fourth Advisor
Frank Hall
Fifth Advisor
Hendricus van der Holst
Abstract
A sign pattern is a matrix whose entries are from the set $\{+, -, 0\}$. This thesis contains problems about refined inertias and minimum ranks of sign patterns.
The refined inertia of a square real matrix $B$, denoted $\ri(B)$, is the ordered $4$-tuple $(n_+(B), \ n_-(B), \ n_z(B), \ 2n_p(B))$, where $n_+(B)$ (resp., $n_-(B)$) is the number of eigenvalues of $B$ with positive (resp., negative) real part, $n_z(B)$ is the number of zero eigenvalues of $B$, and $2n_p(B)$ is the number of pure imaginary eigenvalues of $B$. The minimum rank (resp., rational minimum rank) of a sign pattern matrix $\cal A$ is the minimum of the ranks of the real (resp., rational) matrices whose entries have signs equal to the corresponding entries of $\cal A$.
First, we identify all minimal critical sets of inertias and refined inertias for full sign patterns of order 3. Then we characterize the star sign patterns of order $n\ge 5$ that require the set of refined inertias $\mathbb{H}_n=\{(0, n, 0, 0), (0, n-2, 0, 2), (2, n-2, 0, 0)\}$, which is an important set for the onset of Hopf bifurcation in dynamical systems. Finally, we establish a direct connection between condensed $m \times n $ sign patterns and zero-nonzero patterns with minimum rank $r$ and $m$ point-$n$ hyperplane configurations in ${\mathbb R}^{r-1}$. Some results about the rational realizability of the minimum ranks of sign patterns or zero-nonzero patterns are obtained.
DOI
https://doi.org/10.57709/8841456
Recommended Citation
Gao, Wei, "Minimum Ranks and Refined Inertias of Sign Pattern Matrices." Dissertation, Georgia State University, 2016.
doi: https://doi.org/10.57709/8841456