Date of Award
Summer 6-4-2021
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics and Statistics
Abstract
Most tumors are complex ecosystems that emerge and evolve under robust
selective pressure from their microenvironment. Such a pressure promotes the diversification of both tumor cells and the tumor microenvironment, resulting in increased intratumoral heterogeneity (ITH) that enables aggressive disease progression leading to metastasis and resistance to treatment. Metastasis and the emergence of chemo-resistance are the two main reasons for cancer treatment failure. In this work we focus on developing mathematical models to understand cancer evolution leading to metastasis and chemo-resistance with a special focus on the role of ITH. Our central goal is to understand the evolution of phenotypic heterogeneity as tumor cells
adaptation to various environments. We use a multiscale model to systematically study cancer metastasis and make connections to potential clinical implications for optimizing screening and treatment schedules. At the cell level, we use a cell-based model (the Cellular Potts Model or CPM) to simulate the collective cancer invasion. At the population level, we use continuous replicator dynamics to analyze the adaptation strategies of the tumor. This work reveals how the pairwise interactions between phenotypes within the tumor, together with the microenvironments, alter the dynamics of the tumor progression and change their responses to chemotherapy. The study will offer potential clinical prognosis information and treatment strategies for patients.
DOI
https://doi.org/10.57709/23193070
Recommended Citation
Zhang, Bin, "Modeling Evolution of Intratumor Phenotypic Heterogeneity in Metastasis and Cancer Drug Resistance." Dissertation, Georgia State University, 2021.
doi: https://doi.org/10.57709/23193070
File Upload Confirmation
1