Date of Award
4-21-2008
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
First Advisor
Dr. Frank Hall - Co-Chair
Second Advisor
Dr. Zhongshan Li - Co-Chair
Third Advisor
Dr. Marina Arav
Abstract
A sign pattern matrix is a matrix whose entries are from the set {+,-, 0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive respectively, negative, zero) entry of B by + (respectively, -, 0). For a sign pattern matrixA, the sign pattern class of A, denoted Q(A), is defined as { B : sgn(B)= A }. The minimum rank mr(A)(maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A)= mr(A)+1 are established. In particular, a complete characterization of these sign patterns is obtained. Further, the results on sign patterns that require almost unique rank are extended to sign patterns A for which the spread is d =MR(A)-mr(A).
DOI
https://doi.org/10.57709/1059703
Recommended Citation
Merid, Assefa D., "Sign Pattern Matrices That Require Almost Unique Rank." Thesis, Georgia State University, 2008.
doi: https://doi.org/10.57709/1059703