Date of Award
11-21-2008
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
First Advisor
Michael Stewart - Chair
Second Advisor
Frank Hall
Third Advisor
George Davis
Abstract
This paper investigates some of the ideas and algorithms developed for exploiting the structure of quasiseparable matrices. The case of purely scalar generators is considered initially. The process by which a quasiseparable matrix is represented as the product of matrices comprised of its generators is explained. This is done clearly in the scalar case, but may be extended to block generators. The complete factoring approach is then considered. This consists of two stages: inner-outer factorization followed by inner-coprime factorization. Finally, the stability of the algorithm is investigated. The algorithm is used to factor various quasiseparable matrices R created first using minimal generators, and subsequently using non-minimal generators. The result is that stability of the algorithm is compromised when non-minimal generators are present.
DOI
https://doi.org/10.57709/1059721
Recommended Citation
Johnson, Paul D., "Factorization of Quasiseparable Matrices." Thesis, Georgia State University, 2008.
doi: https://doi.org/10.57709/1059721