Date of Award
Summer 8-7-2012
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physics and Astronomy
First Advisor
D. Michael Crenshaw
Abstract
Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight. However, except for a few special cases, the specific inclinations of individual AGN are unknown. We have developed a promising technique for determining the inclinations of nearby AGN by mapping the kinematics of their narrow-line regions (NLRs), which are easily resolved with Hubble Space Telescope (HST) [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph (STIS). Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our line of sight. We present NLR analysis of 52 Seyfert galaxies and resultant inclinations from models of 17 individual AGN with clear signatures of biconical outflow. From these AGN, we can for the first time assess the effect of inclination on other observable properties in radio-quiet AGN, including the discovery of a distinct correlation between AGN inclination and X-ray column density.
DOI
https://doi.org/10.57709/3097087
Recommended Citation
Fischer, Travis C., "Determining Inclinations of Active Galactic Nuclei via their Narrow-Line Region Kinematics." Dissertation, Georgia State University, 2012.
doi: https://doi.org/10.57709/3097087