Author ORCID Identifier
https://orcid.org/0000-0003-2344-5398
Date of Award
Spring 5-13-2022
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Public Health
First Advisor
Dr. Gerardo Chowell
Second Advisor
Dr. Ruiyan Luo
Third Advisor
Dr. Richard Rothenberg
Fourth Advisor
Dr. Isaac Chun-Hai Fung
Fifth Advisor
Dr. Alexander Kirpich
Abstract
Emerging and re-emerging infectious diseases present one of the most important health and security risks to humanity. Mathematical models and statistical and simulation approaches can be useful tools to assess the disease transmission dynamics and forecast the epidemic trends in near real time to inform the public health policies.
We employ mathematical and statistical methods to assess transmission dynamics and forecast the trajectory of epidemics in context of the COVID-19 pandemic in four Latin American countries. Our first investigation utilizes time-series case incidence data from Peru modeled by the generalized growth model to short-term forecast the pandemic trajectory and estimate the reproduction number. The second study employs a generalized logistic growth model along with the generalized growth model to assess the transmission dynamics and effectiveness of control interventions in Chile. The third and fourth study employs two additional phenomenological growth models; the Richards growth model, and the sub-epidemic wave model to reveal the unfolding of the COVID-19 pandemic in Mexico and Colombia. These models are utilized to short term forecast the epidemic trajectory, compare the forecasting performance across models as well as estimate the reproduction number using a renewal equation method. Simultaneously, genomic analysis and Cori et. al method are also employed to estimate the fluctuations in reproduction number throughout the pandemic.
Across the four studies, the results show that the sub-epidemic model outperforms the GLM and Richards growth model for short-term forecasting the epidemic trajectory capturing complex epidemic shapes. Moreover, the estimates of transmission potential indicate continued virus transmission during the early growth phase of the pandemic, exhibiting sub-exponential growth dynamics, and fluctuations in the reproduction number around 1.0 for the later part of the pandemic indicating the effectiveness of control interventions. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit predictions need to be interpreted with caution as the policy makers rely on the results inferred from these mathematical models for making key decisions about prevention and mitigation plans. The methodology presented in this dissertation provides a thorough guide for conducting model-based inferences and presenting the uncertainty associated with parameter estimation results.
Recommended Citation
Tariq, Amna, "Comparative Assessment of Methodology to Forecast and Assess the Transmission Potential of Epidemics/Pandemics." Dissertation, Georgia State University, 2022.
doi: https://doi.org/10.57709/28876985
DOI
https://doi.org/10.57709/28876985
File Upload Confirmation
1