Date of Award
Fall 11-29-2011
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Chemistry
First Advisor
Gabor Patonay
Abstract
In part A, the effect of varying short-chain alkyl substitution on the spectroscopic properties of cyanine dyes was examined. Molar absorptivities and quantum yields were determined for groups of pentamethine and heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length did not significantly change quantum yield or molar absorptivity. These results may be useful in designing new cyanine dyes.
In part B, the effect of structure on the suitability of 2,4,6-trisubstituted pyridines as color pH indicators was studied by determining spectral effects of protonation, molar absorptivities, pKa values, and the structural origin of the spectral behavior. Good color indicating properties result from aniline substitution at the 4 position of pyridine and electron donating substitution at the 2 and 6 positions of pyridine, which provide a strong red shift in the spectra and greater red shifted peak absorptivity, respectively.
DOI
https://doi.org/10.57709/2378587
Recommended Citation
Chapman, Gala M., "Spectroscopic Studies of Carbocyanine and 2,4,6- Trisubstituted Pyridine Dyes for Bioanalytical and pH Indicating Applications." Thesis, Georgia State University, 2011.
doi: https://doi.org/10.57709/2378587