Date of Award


Degree Type


Degree Name

Master of Science (MS)



First Advisor

Dr. Andrew Clancy - Chair

Second Advisor

Dr. Thomas Wichmann - Co-Chair

Third Advisor

Dr. Kyle Frantz


In the present study, electrophysiological and behavioral effects of compromised Gama-Aminobutyric Acid (GABAergic) transmission were investigated in adult Rhesus macaque monkeys (N=2). GABAergic transmission was perturbed in the putamen by administration of a GABAa receptor antagonist, gabazine (10 and 500 μM), via a microdialysis-local field potential (MD-LFP) probe. Resultant changes in striatal local field potentials (LFPs) were measured as an assay of synchrony. Gabazine perfusion evoked discrete large amplitude spikes in LFPs in all subjects, and the frequency and shape of individual spikes were concentration-dependent. Pre-treatment with the GABAa receptor agonist, muscimol (100 μM) blocked the gabazine-induced events, confirming a role for GABAa receptors in the effects. Behavioral manifestations of gabazine treatment were observed only at the maximum concentration. Unusual facial movements suggested aberrant electrical activity was propagated from striatum to motor cortex, perhaps via reentrant circuits. These results support a role for GABAergic transmission in segregation of striatal circuits.


Included in

Psychology Commons